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PHOTOELECTRONIC PROPERTIES OF

TERNARY NIOBIUM OXIDES

K. Dwight and A. Wold

Department of Chemistry

Brown University

Providence, Rhode Island 02912

Ferric oxide is known to have an optical band gap of about
2 eV, and the literature contains many reports of photoelectro-
chemical measurements on "conducting", n-type Fe2 03 (1, 2, 3, 4,
5). Unfortunately, any attempt to reduce ferric oxide results-in
the formation of magnetite as a distinct separate phase, and
there is no solubility of this spinel in the corundum structure
(5, 6). Thus, all the properties reported above for Fe203 were
measured either on multiphase samples or on samples which con-
tained impurities.

The ternary iron oxides, as exemplified by the iron-niobium
system, offer an opportunity to obtain single-phase, conducting
n-type iron oxides; in which the conductivity can be controlled
by means of chemical substitution. At first glance, FeNbO4 and
FeNb 206 might appear to be very different materials. Yet as
DNM'O 4 and NM' 2 06 they merely represent superstructures of the
basic a-PbO2 structure obtained under the conditions of prepara-
tion (7). Consequently, they form a solid solution in which the
two valence states of iron are uniformly distributed throughout a
single homogeneous phase (8).

However, many ternary systems incorporate a second photoac-
tive center in addition to the [FeO 6  octahedra: in the present
case, [NbO6 ] .-octahedra. The interaction between such multiple
centers has not previously been investigated. In the present
work, interband transitions are observed which appear characteris-
tic of niobium centers, together with other transitions character-
istic of the iron centers. Since these are homogeneous, single-
phase materials, this result suggests that caution should be exer-
cised when applying the conventional band model to such oxide
semiconductors.

For materials with a single photoactive center, it is gener-
ally observed that the optical band gap and flat-band potential
are interrelated, so that lower band gaps appear to be accompanied
by more positive flat-band potentials (4,9). Nevertheless, the
non-active A-site ions in such ternary compounds as BaTiO3,
SrTiO Ba .Sr NbO and Sr Nb 0 do have a p turbing effect -..
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(4, 7, 9, 0). Consequently, it multiple photoactive centers can
maintain sufficiently independent existence in a single compound,
it would be conceivable that significant deviations from the usual
correlation of high flat-band potentials with low band-gap ener-
gies might occur.

Effects of Composition and Structure

Before proceeding to ternary oxides with multiple photoactive
centers, the effects of composition and structure upon such photo-
electronic properties as optical band gap and flat-band potential
for a given active center should be considered. It will be seen
that composition appears to primarily affect the flat-band poten-
tial, whereas the band gap is more sensitive to structure.
* Sr2Nb207 is a pyrochlore; Ba0 .5Sr0*5Nb206 is a defect perov-
skite. In both materials, the CNbO6 ] octahedra are the only pho-
toactive centers. As shown in Figure 1, the flat-band potential
of the pyrochlore is more negative by 0.4 volts, and its band gap
is correspondingly larger, as would be expected. But the respec-
tive roles of structure and composition cannot be deduced from
this comparison alone.

BaTiO 3 and SrTiO3 are both perovskites and have nearly the
same optical band gaps. Yet the flat-band potential of SrTiO3 is
0.6 volts more negative than for the barium analog, a difference
comparable in magnitude to that noted above for the niobates.
Furthermore, it can be seen from Figure I that the band gap in the
rutile TiO2 is significantly lower than in these perovskite ti-
tanates.

Thus, the behavior in both the titanium and niobium systems
is consistent with the hypothesis that the A-site cation is pri-
marily responsible for variation in flat-hand potential while the
structure is primarily responsible for variation in optical band
gap, Of course, it has been noted elsewhere that other properties
such as the magnitude of the quantum efficiency also depend upon
structure (10).

From Figure 1 it is evident that Fe203, FeNbO4 , and FeTiO 3
all have relatively positive flat-band potentials, which is pre-
sumably a characteristic of the iron. The band gap in the titan-
ate appears to be associated with the [TiO 6] octahedra; that in
the niobate appears to match ferric oxide within structural vari-
ability. From such a cursory analysis, there would appear to be
no effect from the presence of a second photoactive center in
these two materials.

However, the existence of such an effect can be demonstrated
by the application of a recently proposed technique for the study
of interband transitions having energies greater than the "opti-
cal" band gap (11). Standard procedures exist for the extraction
of band-gap information from measurement of the optical absorp-
tion coefficient, which has been shown to be proportional to the
quantum efficiency (photocurrent density divided by the incident
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light flux) under conditions applicable to the materials consid-
ered here (11, 12). The photoelectrolysis experiment provides an
effective sampling region much thinner than can be obtained by
polishing crystals, thereby extending the range of measurement to
much higher energies. Since this technique is not yet widely
known, an outline of its principal features is presented in the
following section.

Band-Gap Analysis

Under moderate irradiation, the reaction rate in a photoelec-
trolysis cell is limited by the arrival rate of holes at the anode
surface (12), in which case the quantum efficiency n is given by:

1 - [exp (-aW)]/(1 + aL )

where a is the optical absorption coefficient, Lp is the hole dif-
fusion length, and W is the width of the depletion layer (12).
Also,

Ws = [2ico (V-Vfb)/eNo1I /2

and andL p [cc. (kT/e)/eNo]l/2

since the hole diffusion length is determined by bulk recombin-
ation in highly defective oxides (11,12).

The dielectric constant C can be estimated to be of the order
of 100, and the donor concentration No can be estimated from the
measured conductivity, activation energy and Hall mobility to be
of the order of 1020 cm- 3. Then W 16 cm and is even

smaller, so that expansion of the exponential yields a quantum
efficiency proportional to the optical absorption coefficient even
for large values of a.

The optical absorption coefficient for a single interband
transition is related to the photon energy by a - (hv)-l(hv - Eg)n
where Eg is the band gap and n depends upon the character of the
transition (n - 0.5 for allowed direct transitions; n = 2 for
allowed indirect ones). Thus, if experimental values for a are
multiplied by hv, and are plotted as (ahv)( I/n against hV, then a
straight line intersecting the energy axis at Eg will be obtained
when n correctly characterizes the transition. Since the total
optical absorption coefficient a for a compound comprises the sum
of such contributions from successive interband transitions, its
complete analysis must proceed in stages. Each transition is
characterized in turn, starting from the lowest energy, whereupon
its contribution to the absorption is extrapolated to higher ener-
gies and subtracted from the total a. However, the simple deter-
mination of the interband transition energies does not require
this elaborate process, the onset of each additional contribution

aI



-4 -

to the total a being clear]y visible as an abrupt increase in the
slope of the graph of (chv) f /n) vs hv. Furthermore, higher-ener-
gy direct transitions can often be identified unambiguously with-
out subtracting the contributions from lower-energy indirect ones.

The absorption coefficient increases with increasing photon
energy, and each successive transition adds to the rate of in-
crease. Consequently, the analysis of higher-energy transitions
is limited by the maximum value of a which can be measured, which
is inversely proportional to the thickness of the sample. In the
photoelectrolysis experiment, the depletion layer forms a very
narrow sampling region, so that the maximum value of c measurable
by n is large. This permits the determination of interband tran-
sitions well above the energy of the lowest band gap,(11).

In order to illustrate the power and reliability of this ana-
lytical procedure, the quantum efficiency n measured for SrTiO ,
being proportional to a, has been multiplied by the photon enegy
hv and is plotted in Figure 2 as (nhv)0 "5 vs hv. The linearity of
the lowest-energy section of this graph (with n = 2) characterizes
the transition as indirect. The energy intercept yields the value
of 3.2 eV for the lowest band gap, which is in good agreement with
previous absorption measurements (13) and with the calculation of
Kahn and Leyendecker (14).

The abrupt increase in slope at 3.37 eV signals the presence
of a higher-energy transition, in accord with the increased ab-
sorption found by electromodulation measurement (15). The de-
crease in slope at 3.5 eV corresponds to a saturation of this con-
tribution to the total absorption and is not understood. Never-
theless, several other materials give evidence of similar
behavior.

Finally, the transition at 3.74 eV agrees both with the elec-
tromodulation spectra (15) and with the band structure calculation
(14). This higher-energy section does not appear greatly differ-

ent from the rest of Figure 2, although there is. some curvature of
the data. -However, this region becomes truly linear when replot-
ted as (nhv)2 versus hv, which establishes the direct character of
the high-energy transition.

Results and Discussion

The quantum efficiency data for the defect pyrochlore
Ba0 5Sr0 5Nb2 06 is presented in Figure 3 (10). It shows an indi-
recL bana gap at 3.4 eV with a "tail" extending to nearly 2.6 eV.
The higher-energy transition at 4.4 eV shows some curvature of the
data, and indeed, corresponds to a direct transition when replot-
ted as (nhv) 2 versus energy (10).

Similar data for the pyrochlore Sr2Nb 207 is plotted in Figure
4. Here the principle indirect band gap occurs at 3.9 eV with a
"tail" to nearly 3.4 eV. The data beyond 4.3 eV cannot be inter-
preted quantitatively because of a breakdown in the conditions
required for the band-gap analysis, but there is an indication of

4
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a transition in the vicinity of 4.7 eV. Thus the behavior is
qualitatively similar to that observed in the perovskite niobate,
only shifted to higher energies.

The analagous results for the corundum Fe203 are given in
Figure 5. This shows an indirect band gap at 1.85 eV together
with a direct band gap at 2.5 eV (11). Such simple behavior is in
sharp contrast with the complex succession of transitions shown in
Figure 6 for FeNbO4 (7). Here the lowest-energy transition at
2.05 eV is clearlv indirect. It is followed by several higher-
energy transitions at 2.68, 2.93, 3.24, and 4.38 eV, each giving
rise to a sudden increase in the slope of the curve, but so close
together as to preclude reliable determination of direct or indi-
rect character.

The locations of these additional interband transitibns are
highly suggestive. That at 2.68 eV appears to correlate with the

2.58 eV transition for Fe 03 shown in Figure 5; those at 3.24,
2.9, and 4.38 eV are reminiscent of the indirect transition at
3.4 eV, its "tail," and the direct transition at 4.4 eV shown in
Figure 3 for BaO.5Sro.5Nb2O6. Thus the data for FeNbO4 show all
the characteristics of the [Nb0 6] octahedra in addition to all the
characteristics of the [FeO6] centers. The greater similarity to
the perovskite niobate can be attributed to closer agreement be-
tween their Nb-O bond strengths as compared with those in the
pyrochlore structure.

Summary and Conclusions

When only a single species of photoactive center is present
in a compound, the presence of a non-active, A-site cation pro-
duces a characteristic shift in the flat-band potential. A change
in structure, however, will in general produce a shift in the op-
tical band-gap energy. This is accompanied by corresponding
shifts in any other, higher-energy interband transition, but the
qualitative features remain the same, and hence appear to be
characteristic of the particular photoactive center.

When two species of photoactive centers are simultaneously
present, the higher flat-band potential appears to dominate. But
it is evident that both species contribute their characteristic
sets of interband transitions to the ensemble. In this respect,
these oxide semiconductors behave differently than the conven-
tional, broad-band semiconductors. It would appear that different
photoactive centers remain at least partially independent.

However, further experimentation embracing a variety of ter-
nary systems will be required to determine the degree of inter-
action between such multiple centers. Preliminary results for
Fe2WO6 confirm the superposition of two characteristic sets of
interband transitions. The optical band gap and flat-band poten-
tial are essentially the same as in FeNbO 4, but the quantum effi-
ciency is considerably greater. This suggests that there may be
some enhancement of the photoresponse due to interaction between



-6-

the iron and tungsten centers.
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Figure Captions

Figure I - Optical band gaps and flat-band potentials (adjusted to pH = 13)

for some photoanode materials (4, 7, 9, 10).

Figure 2 - Band-gap analysis for SrTiO3 (11), showing transitions at

3.2, 3.4, and 3.75 eV.

Figure 3 - Band-gap analysis for Ba0. Sr0 .5Nb206 (10), showing transitions

at 2.6, 3.4, and 4.4 eV.

Figure 4 - Band-gap analysis for Sr 2 Nb2 0 7 (10), showing transitions at

3.4 and 3.9 eV.

Figure 5 - Band-gap analysis for Fe203 (L1), showing transitions at

1.85 and 2.58 eV.

Figure 6 - Band-gap analysis for FeNbO4 (7), showing transitions at

2.05, 2.68, 2.9, 3.24, and 4.38 eV.
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